For 1 – 2: Use the figure above to answer the questions

1. Where would the point that bisects \(AB \) lie? Label this point \(M \).

2. Write the congruency statement to indicate what segments are congruent.

For 3 – 6: Solve for the variable and the indicated lengths.

3. \(B \) is the midpoint of \(AC \)

 \[x = 15 \]
 \[AB = 35 \]
 \[AC = 70 \]

4. Point \(D \) bisects \(XZ \)

 \[y = 21 \]
 \[XD = 58 \]
 \[DZ = 58 \]

5. \(WL = 54 \)

 \[4m + 3 = 54 \]
 \[4m + 3 + 4m + 3 = 54 \]
 \[8m + 6 = 54 \]
 \[8m = 48 \]
 \[m = 6 \]
 \[WT = 27 \]
 \[TL = 27 \]

6. \(BN \) bisects \(ZV \)

 \[5x + 1 = 21 \]
 \[5x = 20 \]
 \[x = 4 \]

 \[x = 4 \]
 \[ZC = 21 \]
 \[CN = 12 \]
7. Determine if H is the midpoint of \overline{AQ} if you know $AQ = 6x - 7$

Circle One: H is the midpoint $\boxed{H \text{ is NOT the midpoint}}$

Reasoning: Using the segment addition postulate, I found that $x = 8$. However, if $x = 8$ then $AH \neq HQ$.

8. Calvin’s home is located at the midpoint between Fast Pizza and Pizza Now. Fast Pizza is a quarter mile away from Calvin’s home. How far away is Pizza Now from Calvin’s home? How far apart are the two pizzerias?

Distance from Pizza Now to Calvin’s Home: \(\frac{1}{4}\text{ mile}\)

Distance between the two pizzerias: \(\frac{1}{2}\text{ mile}\)

9. The following solution is incorrect. What is wrong with the solution? How could you fix it?

Wrong solution: $3x = 30$

$x = 10$

Why is this solution wrong? This is wrong because you need to add both smaller segments to equal 30. Since the smaller segments are congruent, we could call them both $3x$. Therefore $3x + 3x = 30$.

$6x = 30$

$x = 5$
Use the midpoint formula \(M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \)

For 10 – 11: Find the midpoint of each set of points

10. \((2, -5)\) and \((6, -3)\)

\[
\left(\frac{2 + 6}{2}, \frac{-5 + (-3)}{2} \right) \quad \rightarrow \quad (4, -4)
\]

11. \((-7, -3)\) and \((17, 9)\)

\[
\left(\frac{-7 + 17}{2}, \frac{-3 + 9}{2} \right) \quad \rightarrow \quad (5, 3)
\]

For 12-13: Given an endpoint A and midpoint M, find the other endpoint C.

12. \(A = (7, -8)\) and \(M = (2, -3)\)

\[
2 \cdot \frac{7 + x}{2} = 2 \cdot 2 \\
x = 3
\]

\[
\left(-3, 2 \right)
\]

13. \(A = (3, 5)\) and \(M = (9, 6)\)

\[
2 \cdot \frac{3 + x}{2} = 9 \cdot 2 \\
x = 16
\]

\[
\left(5, 3 \right)
\]

For 14 – 15: Use the picture to the right to answer the questions.

14. Find the point halfway from point D and point S.

\[
\left(\frac{-2 + 4}{2}, \frac{-4 + 4}{2} \right) \rightarrow \quad (1, 0)
\]

15. Find the point three-fourths of the way from point D to point S.

\[
\text{midpoint } (1, 0) \text{ and } (4, 4) \\
\left(\frac{1 + 4}{2}, \frac{0 + 4}{2} \right) \rightarrow \quad (2.5, 2)
\]